### [Caffe] How to use Caffe to solve the regression problem?

There is a question coming up to my mind recently. How to use Caffe to solve the regression problem? We used to see a bunch of examples related to image recognition with labels and they are classification problem. In my experience, I have done this problem using TensorFlow, not Caffe. But, I think in theory they are both the same. The key point is using EuclideanLossLayer as the final Loss Layer and it's the detail from the official web site:

http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1EuclideanLossLayer.html#details

"This can be used for least-squares regression tasks. An InnerProductLayer input to a EuclideanLossLayer exactly formulates a linear least squares regression problem. With non-zero weight decay the problem becomes one of ridge regression – see src/caffe/test/test_sgd_solver.cpp for a concrete example wherein we check that the gradients computed for a Net with exactly this structure match hand-computed gradient formulas for ridge regression. (Note: Caffe, a…

http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1EuclideanLossLayer.html#details

"This can be used for least-squares regression tasks. An InnerProductLayer input to a EuclideanLossLayer exactly formulates a linear least squares regression problem. With non-zero weight decay the problem becomes one of ridge regression – see src/caffe/test/test_sgd_solver.cpp for a concrete example wherein we check that the gradients computed for a Net with exactly this structure match hand-computed gradient formulas for ridge regression. (Note: Caffe, a…